Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Open Research Exeterarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cleaner Production
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A comparative evaluation of the sustainability of alternative aeration strategies in biological wastewater treatment to support net-zero future

Authors: David Pryce; Zoran Kapelan; Fayyaz A. Memon;

A comparative evaluation of the sustainability of alternative aeration strategies in biological wastewater treatment to support net-zero future

Abstract

In the plight for sustainable development and to support net zero ambitions for climate change mitigation, a broad range of aeration strategies have been developed with the hope of improving efficiency to minimize environmental and economic costs associated with the wastewater treatment processes. However, a balance is levied between reducing oxygen availability and hindering aerobic processes thus compromising performance. In the present work, we evaluate and compare the sustainability of a range of investigated strategies including continuous aeration (CA) at different dissolved oxygen (DO) setpoints (0.5 mg/L, 2.5 mg/L, 4.5 mg/L) and intermittent aeration (IA) at different oxic-anoxic portions (2.5 h on/0.5 h off, 2.0 h on/1.0 h off, 1.5 h on/1.0 h off). To achieve this, an eco-efficiency assessment is performed based on the results of previous life cycle impact and costing analyses for each strategy, while also incorporating a third factor to account for their respective treatment performance. The results demonstrate a clear pattern of increased sustainability for the IA strategies (0.54–0.56 Pt/m3), compared to the CA strategies (0.76–0.77 Pt/m3). While only negligible difference was observed within each aeration type, the trade-off between environmental and economic efficiency and treatment performance was distinct in CA strategies. At the individual pollutant level, IA strategies demonstrated decreasing sustainability for total phosphorous (TP) removal as the anoxic cycle portion increased, while CA at 0.5 mg/L was shown to be the most sustainable strategy for the removal of this pollutant (0.61 Pt/m3). Further work is suggested to incorporate the relative N2O emissions generated by each strategy and to investigate other strategies based on automated control.

Sanitary Engineering

Countries
United Kingdom, Netherlands
Related Organizations
Keywords

Net zero, 600, Wastewater treatment, 333, 620, Sustainable development, Climate change, Life cycle analysis

Powered by OpenAIRE graph
Found an issue? Give us feedback