
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Life-cycle assessment of current and future electricity supply addressing average and marginal hourly demand: An application to Italy


Bastos, Joana

Prina, Matteo Giacomo

Garcia, Rita
The increase in overall electricity demand in recent years, together with the rapid and significant changes in electricity generation has motivated increased research addressing environmental impacts of current and future electricity generation and supply systems. This article presents a comprehensive life-cycle assessment (LCA) of electricity generation and supply for the Italian current mix and future scenarios, for a wide set of environmental impacts and indicators, addressing intra-year variations, and including average and marginal demand impact perspectives. The generation mix was modelled for a 3-year period (2018–2020) with hourly and country-specific data, for the main generation technologies; and two future scenarios (for 2030) were modelled applying the EPLANopt energy system model. While future scenarios - with larger renewable energy shares - resulted in reduced environmental impacts in most categories, they were associated with burden shifts. In particular, increased shares of solar photovoltaic generation in future scenarios resulted in significant contributions to mineral and metal resource depletion and to land use impacts. The high penetration of renewable energy sources in future scenarios was also associated with important seasonal and hourly variations, demonstrating the importance of addressing intra-year temporal variations. Moreover, complementing an average with a marginal demand perspective provided insight on potential impacts of demand changes. When considering a marginal demand perspective, future scenarios offered no clear benefits in terms of global warming, for example. The research demonstrated the need for comprehensive and detailed environmental impact assessments with fine time resolution, which can assess seasonal and intra-daily variations, and the evaluation of environmental impacts with both average and marginal demand perspectives highlighted the complementary nature of the two in providing insightful results. The approach is fully replicable to other countries and regions - it can improve LCAs of electricity generation and supply and provide robust results to adequately inform decision-making on electricity generation and demand management, toward more sustainable energy systems.
- Accademia Europea di Bolzano Italy
- University of Coimbra Portugal
- Accademia Europea di Bolzano Italy
Electricity generation, Life-cycle assessment, Future scenario, Energy system modelling, Marginal demand
Electricity generation, Life-cycle assessment, Future scenario, Energy system modelling, Marginal demand
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).18 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 9 download downloads 20 - 9views20downloads
Data source Views Downloads ZENODO 9 20


