Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cleaner P...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cleaner Production
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2023
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2023
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://dx.doi.org/10.1016/j.jc...
Article
License: Elsevier TDM
Data sources: Sygma
Journal of Cleaner Production
Article . 2023 . Peer-reviewed
versions View all 6 versions
addClaim

Life-cycle assessment of current and future electricity supply addressing average and marginal hourly demand: An application to Italy

Authors: orcid Bastos, Joana;
Bastos, Joana
ORCID
Harvested from ORCID Public Data File

Bastos, Joana in OpenAIRE
orcid Prina, Matteo Giacomo;
Prina, Matteo Giacomo
ORCID
Harvested from ORCID Public Data File

Prina, Matteo Giacomo in OpenAIRE
orcid Garcia, Rita;
Garcia, Rita
ORCID
Harvested from ORCID Public Data File

Garcia, Rita in OpenAIRE

Life-cycle assessment of current and future electricity supply addressing average and marginal hourly demand: An application to Italy

Abstract

The increase in overall electricity demand in recent years, together with the rapid and significant changes in electricity generation has motivated increased research addressing environmental impacts of current and future electricity generation and supply systems. This article presents a comprehensive life-cycle assessment (LCA) of electricity generation and supply for the Italian current mix and future scenarios, for a wide set of environmental impacts and indicators, addressing intra-year variations, and including average and marginal demand impact perspectives. The generation mix was modelled for a 3-year period (2018–2020) with hourly and country-specific data, for the main generation technologies; and two future scenarios (for 2030) were modelled applying the EPLANopt energy system model. While future scenarios - with larger renewable energy shares - resulted in reduced environmental impacts in most categories, they were associated with burden shifts. In particular, increased shares of solar photovoltaic generation in future scenarios resulted in significant contributions to mineral and metal resource depletion and to land use impacts. The high penetration of renewable energy sources in future scenarios was also associated with important seasonal and hourly variations, demonstrating the importance of addressing intra-year temporal variations. Moreover, complementing an average with a marginal demand perspective provided insight on potential impacts of demand changes. When considering a marginal demand perspective, future scenarios offered no clear benefits in terms of global warming, for example. The research demonstrated the need for comprehensive and detailed environmental impact assessments with fine time resolution, which can assess seasonal and intra-daily variations, and the evaluation of environmental impacts with both average and marginal demand perspectives highlighted the complementary nature of the two in providing insightful results. The approach is fully replicable to other countries and regions - it can improve LCAs of electricity generation and supply and provide robust results to adequately inform decision-making on electricity generation and demand management, toward more sustainable energy systems.

Keywords

Electricity generation, Life-cycle assessment, Future scenario, Energy system modelling, Marginal demand

Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
18
Top 10%
Average
Top 10%
9
20
Green
hybrid