Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cleaner Production
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ENEA Open Archive
Article . 2024
Data sources: ENEA Open Archive
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of carbon sink and photovoltaic system carbon reduction along roadside space

Authors: Gengyuan Liu; Zhaoman Huo; Hang Wan; Amalia Zucaro; Gabriella Fiorentino; Yiqong Lu; Qing Yang;

Evaluation of carbon sink and photovoltaic system carbon reduction along roadside space

Abstract

As China's photovoltaic (PV) sector experiences rapid growth, the availability of land resources has become a pivotal policy focus, driving the need for comprehensive research and strategic planning for roadside PV initiatives. Utilizing a fuzzy multi-criteria decision-making approach, combined with GIS spatial analysis and a modular design framework, our study quantitatively compared the carbon reduction capabilities of PV systems against the carbon sequestration potential of various vegetative arrangements along the roadside space. The roadside space analysis modular considers a range of factors including topography, meteorology, and construction costs. We examined the spatial distribution of suitability for PV installation and vegetation establishment along the provincial expressway network in China. The results revealed that Inner Mongolia stood out as the frontrunner in carbon reduction potential within high-suitability zones for PV construction, achieving an impressive 4.845 million tons of carbon reduction—nearly four times greater than that of Shaanxi Province. In contrast, the carbon sequestration attributed to vegetation greening in areas less suited for PV development revealed a higher propensity in the southeastern provinces. Guangdong led the charge with an impressive annual carbon sequestration of 2.89 million tons. This was closely followed by Yunnan, Sichuan, Hebei, Guizhou, and Henan, each achieving carbon sequestration amounts exceeding 2 million tons. These results offer valuable quantitative support and practical recommendations for achieving low-carbon objectives in the construction of China's expressways.

Country
Italy
Keywords

Photovoltaics, Roadside space, Expressways, Carbon emission reduction, Vegetation greening, Carbon sink

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research