Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of CO2 Utili...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of CO2 Utilization
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of CO2 Utilization
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Recolector de Ciencia Abierta, RECOLECTA
Article . 2021 . Peer-reviewed
License: CC BY
Digital.CSIC
Article . 2021 . Peer-reviewed
Data sources: Digital.CSIC
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phycocapture of CO2 as an option to reduce greenhouse gases in cities: Carbon sinks in urban spaces

Authors: Laura Isabel Rodas-Zuluaga; Susana Fuentes-Tristan; Roberto Parra-Saldívar; Carlos Castillo-Zacarías; Juan Eduardo Sosa-Hernández; Itzel Y. López-Pacheco; Hafiz M.N. Iqbal; +3 Authors

Phycocapture of CO2 as an option to reduce greenhouse gases in cities: Carbon sinks in urban spaces

Abstract

Climate change is a shift in the average weather patterns, which could stand for a long-term period. This phenomenon is related to greenhouse gas emissions generated by anthropogenic and non-anthropogenic activities. The most notable climate change effects are the rise of sea levels, changes in the water pH, apparition or increased transmission of diseases, changes in the water cycle, loss of marine ecosystems, and several negative impacts on human health. Due to the adverse effects occasioned by climate change, global initiatives have been taken to mitigate its impact, one of these is the reduction of greenhouse gases such as CO2. Some microorganisms such as photosynthetic bacteria and microalgae can capture CO2 and use it as a carbon source for growth. The outstanding CO2 bio-capture or CO2 phycocapture capacity shown by microalgae make them excellent candidates for reduction of atmospheric CO2 in cities. CO2 phyco-capture equivalent CO2 emissions in Mexico City Metropolitan Area (MCMA) was determined as a case study, considering greenhouse gas emissions in this city. It was estimated that 94,847 tons of microalgae biomass must be produced daily to equal the amount of CO2 emissions (170,726 CO2-eq per day), thus obtaining a zero balance of emissions. For the above, CO2 phyco-capture implementation can be possible in cities and also in open spaces and that even its production can work as the carbon credits nowadays implemented, the space required, and the high capture rate led us to consider that the microalgae production on a larger scale may have a faster effect on the concentration of CO2 globally, which can help with greater urgency to the aims established by 2030. The authors would like to acknowledge the funding provided by Tecnologico de Monterrey through the Bioprocess Research Chair (0020209I13). This work was partially supported by Consejo Nacional de Ciencia y Tecnología (CONACYT) Mexico, under Sistema Nacional de Investigadores (SNI) program awarded to Hafiz M.N. Iqbal (CVU: 735340) and Roberto Parra-Saldivar (CVU: 35753). Peer reviewed

Country
Spain
Keywords

Take urgent action to combat climate change and its impacts, Circular economy, CO bio-capture 2, Environmental impact, Climate change mitigation, Microalgae, Climate change, Gasos d'efecte hivernacle, Canvis climàtics -- Mitigació, //metadata.un.org/sdg/13 [http], Urban spaces, Greenhouse gases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 78
    download downloads 99
  • 78
    views
    99
    downloads
    Data sourceViewsDownloads
    DIGITAL.CSIC4364
    DUGiDocs – Universitat de Girona3535
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
55
Top 1%
Top 10%
Top 1%
78
99
Green
hybrid