
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Piecewise linear discretization of Symbolic Implicit Monte Carlo radiation transport in the difference formulation

We describe a Monte Carlo solution for time dependent photon transport, in the difference formulation with the material in local thermodynamic equilibrium, that is piecewise linear in its treatment of the material state variable. Our method employs a Galerkin solution for the material energy equation while using Symbolic Implicit Monte Carlo to solve the transport equation. In constructing the scheme, one has the freedom to choose between expanding the material temperature, or the equivalent black body radiation energy density at the material temperature, in terms of finite element basis functions. The former provides a linear treatment of the material energy while the latter provides a linear treatment of the radiative coupling between zones. Subject to the conditional use of a lumped material energy in the vicinity of strong gradients, possible with a linear treatment of the material energy, our approach provides a robust solution for time dependent transport of thermally emitted radiation that can address a wide range of problems. It produces accurate results in thick media.
- University of North Texas United States
- Lawrence Berkeley National Laboratory United States
- Lawrence Berkeley National Laboratory United States
- University of North Texas United States
- Touro University California United States
General Physics, Photon Transport, Transport, Diffusion, Lte, Radiations, Radiation Transport, Energy Density, 71 Classical And Quantum Mechanics
General Physics, Photon Transport, Transport, Diffusion, Lte, Radiations, Radiation Transport, Energy Density, 71 Classical And Quantum Mechanics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
