Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Environmental Chemical Engineering
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hydrothermally engineered enhanced hydrate formation for potential CO2 capture applications

Authors: Usman Ali; Tahir Rasheed; Saba Sehar; Saba Sehar; Ayesha Zafar; Ayesha Zafar; Tazien Rashid; +3 Authors

Hydrothermally engineered enhanced hydrate formation for potential CO2 capture applications

Abstract

Gas hydrate formation is regarded as the emerging technology to mitigate the effect of greenhouse gases. Now a day, the alarming situation of increased CO2 concentration of about 450 ppm is associated with elevation of earth temperature up to 2°Ϲ. Where the CO2 hydrate (CO2.6H2O) formation is of environmental and scientific interest due to carbon capture and storage (CCS) in order to condense environmental CO2 concentration. The present study is experimentally addressing the four different sample preparation procedures (method 1, 2, 3 and 4) of stirring for the CO2 hydrate (CO2.6H2O) formation correlated with the integrated gasification combine cycle (IGCC) conditions. A high-pressure volumetric analyzer (HPVA) is used to explore the rate of CO2 hydrate formation that is critically investigated using pressure-time (P-t) curves for all the prepared samples. The highest stirring (method 4) speed with 37000 rpm, had the highest moisture content of 14.8 wt% as well as at 275 K and 36 bar. By using method 4 hydrate conversion of 40.5 mol% was observed. The high stirring method (method 4) show gas uptake of about 3.9 mmol of carbon dioxide per gram of H2O and the highest rate for formation of hydrate as 0.05 mmol of carbon dioxide per gram of H2O per min. Further, comparison of promoter’s combination relative to long experiment duration resulted in the increment of 13.82 mol% of water to hydrate conversion in 2600 min at 283 K and 58 bar for T1–5 (having 5.6 mol% of THF and 0.01 mol% of SDS) as compared to the experiment that was performed in 1200 min.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
Green