
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Influence of the carbon source on the anaerobic biomass adhesion on polyurethane foam matrices

pmid: 15627471
This work focuses on the influence of the source of organic matter on the process of biomass adhesion on polyurethane foam matrices in fixed-bed anaerobic immobilized-sludge reactors. Five experiments were performed in differential 'gradientless' reactors fed with meat extract (protein), glucose, starch, lipids and complex substrate. The polyurethane foam colonization process was monitored temporally in each experiment to identify the amount of biomass buildup, extracellular polymer production and the morphological characteristics of the cells adhering to the support. Different immobilization patterns were observed for the different substrates used. The morphological variety was found to be dependent on the substrate constituents. Polymer excretion was apparently crucial in the colonization process of the polyurethane matrices and was likely related to cell fixation on the support. The production of extracellular polymeric substances speeded up the initial fixation of microorganisms on the polyurethane surface.
- Universidade de São Paulo Brazil
- University of São Paulo Brazil
Time Factors, Polyurethanes, Carbohydrates, Proteins, Lipids, Waste Disposal, Fluid, Carbon, Extracellular Matrix, Oxygen, Bacteria, Anaerobic, Microscopy, Electron, Bioreactors, Biomass, Organic Chemicals
Time Factors, Polyurethanes, Carbohydrates, Proteins, Lipids, Waste Disposal, Fluid, Carbon, Extracellular Matrix, Oxygen, Bacteria, Anaerobic, Microscopy, Electron, Bioreactors, Biomass, Organic Chemicals
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).26 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
