Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Environmental Management
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Attapulgite suspension mitigates fine particulate matter (PM2.5) emission from coal combustion in fluidized bed

Authors: Xiaobin Tang; Xin Wu; Huichao Chen; Huichao Chen; Cai Liang;

Attapulgite suspension mitigates fine particulate matter (PM2.5) emission from coal combustion in fluidized bed

Abstract

To reduce fine particulate matter emission from coal burning sources especially fossil fuel fired energy generation facility is critical to improve air quality. Attapulgite suspension was attempted to spray in a 6 kW fluidized bed facility and reduce fine particulate matter emission during coal combustion. The key parameters such as attapulgite mass, flowrate and spraying zone were investigated to determine the optimal and critical conditions that influence fine particulate matter emission. Exciting results indicate that both fine particle number and mass concentrations are largely decreased due to the physical/chemical absorption with the suitable mass ratio of 3 wt%. The spray of attapulgite suspension in both dense bed and dilute bed effectively mitigates fine particle emission based on the agglomeration and absorption. The most excellent result is achieved at a flowrate of 38 ml/min in dense bed with particle number reduction up to 93.5% in PM2.5 (fine particles is equal to/less than 2.5 μm), 93.6% in PM1.0 (fine particles is equal to/less than 1.0 μm) and 93.7% in PM0.1 (fine particles is equal to/less than 0.1 μm), respectively. The work highlights the potential of spraying attapulgite suspension as an effective process to reduce fine particle emission during coal combustion in fluidized bed system.

Related Organizations
Keywords

Air Pollutants, Silicon Compounds, Magnesium Compounds, Coal, Air Pollution, Particulate Matter, Particle Size, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%