Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CONICET Digitalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CONICET Digital
Article . 2020
License: CC BY NC SA
Data sources: CONICET Digital
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Environmental Management
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Non-isothermal drying of bio-wastes: Kinetic analysis and determination of effective moisture diffusivity

Authors: Baldán, Yanina Lorena; Fernandez, Anabe; Reyes Urrutia, Ramón Andrés; Fabani, Maria Paula; Rodriguez, Rosa Ana; Mazza, German Delfor;

Non-isothermal drying of bio-wastes: Kinetic analysis and determination of effective moisture diffusivity

Abstract

A macro-thermogravimetric analysis (macro-TGA) was applied to analyse the non-isothermal drying of different bio-wastes (quince solid waste, grape marc and pumpkin shell from different enterprises located in San Juan Province, Argentina). The experimental data were obtained at three heating rates (5, 10 and 15 K/min) and two different initial moisture contents (30 and 50% w/w). These data were fitted using the Coats-Redfern and Sharp methods. The D2 model showed the best fitting for all experiments when using the Coats-Redfern method. It is assumed that drying occurs on the solid boundary. The predicted Ea values ranged from 43.60 to 64.50 kJ/mol for the three bio-wastes under the different experimental conditions. The Ea value slightly increases with the increase in heating rate because the wastes require more energy to undergo drying. Deff increases moderately with temperature at the beginning of the dehydration process; then, this increasing behaviour is significant due to the loss of continuous moisture channels. Otherwise, Deff increases with the initial moisture content, showing that the humidity of the samples did not reach the saturation content.

Country
Argentina
Keywords

Argentina, MACRO-THERMOGRAVIMETRY ANALYSIS, Solid Waste, Kinetics, BIO-WASTES, https://purl.org/becyt/ford/2.4, EFFECTIVE MOISTURE DIFFUSIVITY, Thermogravimetry, https://purl.org/becyt/ford/2, Desiccation, NON-ISOTHERMAL DRYING

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%