
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Enhanced biomass and cadmium accumulation by three cadmium-tolerant plant species following cold plasma seed treatment

pmid: 34246900
Cold plasma seed treatment can promote plant growth and enhance the resistance of agricultural crops to adverse stress. However, the effects of plasma seed treatment on the growth and phytoextraction response of plants to cadmium (Cd) remain poorly documented. Here, we have investigated the feasibility of using plasma seed treatment to enhance the biomass and Cd accumulation of three Cd-tolerant species, namely Bidens pilosa L, Solanum nigrum L. and Trifolium repens L, under different plasma treatment conditions. Possible enhancement mechanisms are also proposed according to the levels of organic acids in the roots and the Cd fractions in rhizosphere soil following different plasma treatment conditions. The optimum plasma power was 100 W (B. pilosa) or 500 W (S. nigrum and T. repens). The optimum plasma exposure time for all three species was 60 s. Plasma seed treatment under the optimum treatment conditions enhanced plant dry biomass by ~17.3-45.0% and Cd accumulation by 8.8-54.4% across all three species compared to the controls. Furthermore, the phytoremediation efficiencies, bioaccumulation factors and transfer factors of the three species also increased significantly after seed plasma treatment. The promotion of plasma treatment on the biomass and Cd accumulation of three species might be due to increased exudation of organic acids from the roots into the rhizosphere soil, thus increasing the concentrations of acid-soluble Cd to form Cd-organic acid complexes that facilitated the uptake and translocation of Cd by the plants. Results of this study revealed that cold plasma seed treatment is an environmentally friendly, economical and efficient means to develop the application of phytoremediation for Cd-contaminated soils.
- Institute of Soil Science China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- University of Chinese Academy of Sciences China (People's Republic of)
Plasma Gases, Plant Roots, Soil, Biodegradation, Environmental, Seeds, Soil Pollutants, Biomass, Cadmium
Plasma Gases, Plant Roots, Soil, Biodegradation, Environmental, Seeds, Soil Pollutants, Biomass, Cadmium
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
