Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Environmental Management
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Two-phase synthesis of Fe-loaded hydrochar for As removal: The distinct effects of initial pH, reaction time and Fe/hydrochar ratio

Authors: Di Caprio, Fabrizio; Pellini, Andrea; Zanoni, Robertino; Astolfi, Maria Luisa; Altimari, Pietro; Pagnanelli, Francesca;

Two-phase synthesis of Fe-loaded hydrochar for As removal: The distinct effects of initial pH, reaction time and Fe/hydrochar ratio

Abstract

Hydrothermal carbonization (HTC) is a promising technology for producing char material (hydrochar) from waste biomass. In the present work, a two-stage process was applied and optimized to obtain a composite Fe-loaded hydrochar effective in removing arsenic from water. The first stage of carbonization of the biomass in acid conditions was followed by loading Fe3O4 in the second stage into the hydrochar by alkaline co-precipitation. The effect on the kinetics and on the final yield of HTC induced by a variation of the initial acid pH (5.6, 2.0, and 0.5) was tested. Biomass hydrolysis initially decreased the hydrochar yield and released soluble organic species, responsible for the observed pH variation. This effect was more remarkable at the lower initial pH tested. Soluble organic compounds eventually underwent polymerization, with secondary char formation, an inversion of the pH trend and an increase of hydrochar yield and C%. The final pH attained was linearly related to the hydrochar C%, O/C ratio, and initial pH. Better carbonization performances were achieved at pH = 0.5, 200 °C, and 30 min reaction time, which resulted in 53% mass yield and 72 C%. This value is larger than those previously reported for processes conducted at higher temperatures, and it shows how the addition of acid allows working at lower operative temperatures. Fe loading gave better yields at lower hydrochar concentrations, producing an adsorbent with up to 74% Fe3O4, which adsorbed 2.67 mg/g arsenic. Its adsorption capacity was remarkably affected by the stirring method used, indicating that particle-to-particle interactions considerably influence the process. This effect should be better studied for improved applications in fixed-bed columns.

Country
Italy
Keywords

Temperature, Hydrogen-Ion Concentration, Carbon, Arsenic, arsenic adsorption; feedwater pH; hydrothermal carbonization; iron oxide; magnetic biochar; olive pomace, Reaction Time, Adsorption, Biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Green