Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HAL-CEAarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-CEA
Article . 2023
License: CC BY
Data sources: HAL-CEA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-INSU
Article . 2023
License: CC BY
Data sources: HAL-INSU
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Environmental Management
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://doi.org/10.22541/essoa...
Article . 2022 . Peer-reviewed
Data sources: Crossref
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

How climate change may shift power demand in Japan: Insights from data-driven analysis

Authors: Gurriaran, Léna; Tanaka, Katsumasa; Takahashi, Kiyoshi; Ciais, Philippe;

How climate change may shift power demand in Japan: Insights from data-driven analysis

Abstract

The impact of climate change on power demand in Japan is a matter of concern for the Japanese authorities and power companies as it may have consequences on the power grid. We trained random forest models against daily power data in ten Japanese regions and for different types of power generation to project changes in future power production and its carbon intensity. To do so, we used twelve predictors: six climate variables, five variables accounting for human exposure to climate, and one variable for the level of human activities. We then used the models trained from the present-day period to estimate the future power demand, carbon intensity, and pertaining CO2 emissions over the period 2020-2100 under three SSPs scenarios (Shared Socioeconomic Pathways: SSP126, SSP370, and SSP585). The impact of climate change on CO2 emissions via power generation shows seasonal and regional disparities. In cold regions, a decrease in power demand during winter under future warming leads to an overall decrease in power demand over the year. In contrast, the decrease in winter power demand in hot regions can be overcompensated by an increase in summer power demand because of more frequent hot days, leading to an overall annual increase. From our regional models, the power demand should increase the most in most Japanese regions in May, June, September, and October and not in the middle of summer, as has been found in older studies. Such an increase could result in regular power outages during those months if not considered, as the power grid could be particularly tense. Overall, we observed that power demand in regions with extreme climates is more sensitive to global warming than in temperate regions. The impact of climate change on power demand induces a net annual decrease in CO emissions in all regions except for Okinawa, in which power demand strongly increases during the summer, resulting in a net annual increase in CO emissions. However, climate change’s impact on carbon intensity may reverse the trend in some regions (Shikoku, Tohoku). We also assessed the relative impacts of socioeconomic factors such as population, GDP, and environmental policies on CO emissions. When combined with these factors, we found that the climate change effect is more important than when considered individually and significantly impacts total CO emissions under SSP585.

Country
France
Keywords

[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, 330, Atmosphere, [SDU.OCEAN] Sciences of the Universe [physics]/Ocean, Atmosphere, Climate Change, Carbon Dioxide, Global Warming, [SDU.ENVI] Sciences of the Universe [physics]/Continental interfaces, environment, Carbon, Japan, Humans, [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green