Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Environmental Management
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Life cycle assessment of hydrothermal carbonization of municipal solid waste for waste-to-energy generation

Authors: Kaniz Fatema Rahman; Md Farhatul Abrar; Sanjida Safa Tithi; Kazi Bayzid Kabir; Kawnish Kirtania;

Life cycle assessment of hydrothermal carbonization of municipal solid waste for waste-to-energy generation

Abstract

Municipal solid waste (MSW) management is a major concern for Bangladesh, given its high population density and increasing waste production rate. Conventional waste management methods, such as landfilling, result in high carbon emissions for the environment. With over 70% of MSW being organic, hydrothermal carbonization (HTC) has emerged as a promising technology for recovering energy and nutrients from such heterogeneous waste streams. This study aimed to compare the environmental effects of HTC coupled with electricity generation (HTC-EG) from MSW with traditional landfilling using life cycle assessment in the context of Bangladesh. The HTC-EG scenario showed lower environmental impacts in three out of five impact categories, specifically reducing climate change, freshwater ecotoxicity, and photochemical ozone formation. For a functional unit of 6000-ton MSW, HTC-EG reduces the climate change impact by 7.7 × 106 kg CO2 eq. Additionally, HTC-EG has 46.77% less impact on freshwater ecotoxicity compared to landfilling and reduces the photochemical ozone formation impact by 1.86 × 104 NMVOC eq. However, the HTC-EG scenario leads to increased particulate matter formation and marine water eutrophication due to SO2, SO3, and PM2.5 emissions during hydrochar combustion and nitrate release from the liquid stream of the HTC reactor, respectively. Addressing these challenges through appropriate post-processing of flue gas from hydrochar combustion and HTC liquid streams could make HTC-EG a viable alternative to landfilling for MSW management in Bangladesh.

Keywords

Bangladesh, Waste Management, Climate Change, Solid Waste, Carbon, Refuse Disposal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Related to Research communities
Energy Research