Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Environmental Sciences
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of turbulence on carbon emission in shallow lakes

Authors: Wenqing Shi; Bryce Van Dam; Jian Zhou; Lin Zhu; Boqiang Qin;

Effects of turbulence on carbon emission in shallow lakes

Abstract

Turbulent mixing is enhanced in shallow lakes. As a result, exchanges across the air-water and sediment-water interfaces are increased, causing these systems to be large sources of greenhouse gases. This study investigated the effects of turbulence on carbon dioxide (CO2) and methane (CH4) emissions in shallow lakes using simulated mesocosm experiments. Results demonstrated that turbulence increased CO2 emissions, while simultaneously decreasing CH4 emissions by altering microbial processes. Under turbulent conditions, a greater fraction of organic carbon was recycled as CO2 instead of CH4, potentially reducing the net global warming effect because of the lower global warming potential of CO2 relative to CH4. The CH4/CO2 flux ratio was approximately 0.006 under turbulent conditions, but reached 0.078 in the control. The real-time quantitative PCR analysis indicated that methanogen abundance decreased and methanotroph abundance increased under turbulent conditions, inhibiting CH4 production and favoring the oxidation of CH4 to CO2. These findings suggest that turbulence may play an important role in the global carbon cycle by limiting CH4 emissions, thereby reducing the net global warming effect of shallow lakes.

Related Organizations
Keywords

Air Pollutants, Climate Change, Carbon Dioxide, Global Warming, Carbon, Lakes, Methane, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%