
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effects of turbulence on carbon emission in shallow lakes

pmid: 29941252
Turbulent mixing is enhanced in shallow lakes. As a result, exchanges across the air-water and sediment-water interfaces are increased, causing these systems to be large sources of greenhouse gases. This study investigated the effects of turbulence on carbon dioxide (CO2) and methane (CH4) emissions in shallow lakes using simulated mesocosm experiments. Results demonstrated that turbulence increased CO2 emissions, while simultaneously decreasing CH4 emissions by altering microbial processes. Under turbulent conditions, a greater fraction of organic carbon was recycled as CO2 instead of CH4, potentially reducing the net global warming effect because of the lower global warming potential of CO2 relative to CH4. The CH4/CO2 flux ratio was approximately 0.006 under turbulent conditions, but reached 0.078 in the control. The real-time quantitative PCR analysis indicated that methanogen abundance decreased and methanotroph abundance increased under turbulent conditions, inhibiting CH4 production and favoring the oxidation of CH4 to CO2. These findings suggest that turbulence may play an important role in the global carbon cycle by limiting CH4 emissions, thereby reducing the net global warming effect of shallow lakes.
- Chinese Academy of Sciences China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- Nanjing Institute of Geography and Limnology China (People's Republic of)
- Nanjing Hydraulic Research Institute China (People's Republic of)
- Research Center for Eco-Environmental Sciences China (People's Republic of)
Air Pollutants, Climate Change, Carbon Dioxide, Global Warming, Carbon, Lakes, Methane, Environmental Monitoring
Air Pollutants, Climate Change, Carbon Dioxide, Global Warming, Carbon, Lakes, Methane, Environmental Monitoring
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).20 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
