Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Environmental Sciences
Article . 2025 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Meteorological effects on sources and future projection of nitrogen deposition to lakes in China

Authors: Cheng Shi; Hao Guo; Xue Qiao; Jingsi Gao; Ying Chen; Hongliang Zhang;

Meteorological effects on sources and future projection of nitrogen deposition to lakes in China

Abstract

Lake ecosystems are extremely sensitive to nitrogen growth, which leads to water quality degradation and ecosystem health decline. Nitrogen depositions, as one of the main sources of nitrogen in water, are expected to change under future climate change scenarios. However, it remains not clear how nitrogen deposition to lakes respond to future meteorological conditions. In this study, a source-oriented version of Community Multiscale Air Quality (CMAQ) Model was used to estimate nitrogen deposition to 263 lakes in 2013 and under three RCP scenarios (4.5, 6.0 and 8.5) in 2046. Annual total deposition of 58.2 Gg nitrogen was predicted for all lakes, with 23.3 Gg N by wet deposition and 34.9 Gg N by dry deposition. Nitrate and ammonium in aerosol phase are the major forms of wet deposition, while NH3 and HNO3 in gas phase are the major forms of dry deposition. Agriculture emissions contribute to 57% of wet deposition and 44% of dry deposition. Under future meteorological conditions, wet deposition is predicted to increase by 5.5% to 16.4%, while dry deposition would decrease by 0.3% to 13.0%. Changes in wind speed, temperature, relative humidity (RH), and precipitation rates are correlated with dry and wet deposition changes. The predicted changes in deposition to lakes driven by meteorological changes can lead to significant changes in aquatic chemistry and ecosystem functions. Apart from future emission scenarios, different climate scenarios should be considered in future ecosystem health evaluation in response to nitrogen deposition.

Related Organizations
Keywords

China, Lakes, Air Pollutants, Nitrogen, Climate Change, Ecosystem, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research