Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Environmental Sciences
Article . 2025 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://doi.org/10.2139/ssrn.4...
Article . 2024 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhancement effect of biomass-derived carbon quantum dots (CQDs) on the performance of dye-sensitized solar cells (DSSCs)

Authors: Ramhari Paneru; Xuejing Kang; Samir Budhathoki; Zhe Chen; Qian Yang; So Tie Tjeng; Qilin Dai; +3 Authors

Enhancement effect of biomass-derived carbon quantum dots (CQDs) on the performance of dye-sensitized solar cells (DSSCs)

Abstract

Corn stover, an agricultural waste, was used to prepare nitrogen self-doped carbon quantum dots (CQDs) through a simple hydrothermal method with only water at near room temperature for the first time. The surface, electrochemical, and photovoltaic characteristics of CQDs doped TiO2 in dye-sensitized solar cells (DSSCs) were thoroughly and systematically examined. The average diameter of blue-fluorescence CQDs measured by a high-resolution transmission electron microscope (HR-TEM) was 4.63 ± 0.87 nm, which consisted of polar functional groups. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy of the biomass-derived CQDs, determined by the cyclic voltammetry (CV) test, were, -5.48 eV and -3.89 eV, respectively. The negative shift of flat band potential (Vfb) in CQDs incorporated photoanode implies the fermi level shifted upward. Experimental results revealed that the improved performance of DSSCs was due to charge transport enhancement and separation, which resulted in the improved energy level configuration between TiO2, CQDs, and electrolytes. In this regard, the CQDs serve as a mediator that enables charge carrier transport without hindrance. In this study, CQDs added to TiO2 + N719, increased short circuit current density (JSC) and power conversion efficiency (PCE) value by ∼26.00 % (10.13 to 12.69 mA/cm2) and 27.20 % (4.78 % to 6.08 %), respectively.

Related Organizations
Keywords

Titanium, Electric Power Supplies, Quantum Dots, Solar Energy, Biomass, Coloring Agents, Carbon

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Related to Research communities
Energy Research