
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Glass-ceramic oxidation protection of higher manganese silicide thermoelectrics

handle: 11583/2696567
Abstract A higher manganese silicide (HMS) thermoelectric, with composition MnSi1.74, densified by spark plasma sintering, was successfully coated with a glass-ceramic, in order to be used at temperatures higher than 500 °C. Compositional changes in both the HMS substrate and the glass-ceramic coating are reviewed and discussed with respect to the electrical properties of the uncoated and coated HMS before and after thermal cycles from RT to 600 °C in air. The formation of a Si-deficient layer (MnSi) on the uncoated HMS surface is due to the reaction between the HMS and oxygen at 600 °C, thus contributing to a lower power factor in comparison with the as-sintered HMS. Coated HMS samples (after thermal cycles RT-600 °C) show a lower electrical resistivity and a significantly higher power factor in comparison with the uncoated ones. The glass-ceramic coating is self-reparable at 600 °C, as demonstrated by the complete sealing of an induced scratch on its surface.
- Queen Mary University of London United Kingdom
- Polytechnic University of Turin Italy
glass-ceramic; coating; thermoelectric; oxidation
glass-ceramic; coating; thermoelectric; oxidation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
