Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Publications Open Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the European Ceramic Society
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Glass-ceramic oxidation protection of higher manganese silicide thermoelectrics

Authors: Salvo, M.; Smeacetto, F.; D’Isanto, F.; Viola, G.; DEMITRI, PAOLA; Gucci, F.; Reece, M. J.;

Glass-ceramic oxidation protection of higher manganese silicide thermoelectrics

Abstract

Abstract A higher manganese silicide (HMS) thermoelectric, with composition MnSi1.74, densified by spark plasma sintering, was successfully coated with a glass-ceramic, in order to be used at temperatures higher than 500 °C. Compositional changes in both the HMS substrate and the glass-ceramic coating are reviewed and discussed with respect to the electrical properties of the uncoated and coated HMS before and after thermal cycles from RT to 600 °C in air. The formation of a Si-deficient layer (MnSi) on the uncoated HMS surface is due to the reaction between the HMS and oxygen at 600 °C, thus contributing to a lower power factor in comparison with the as-sintered HMS. Coated HMS samples (after thermal cycles RT-600 °C) show a lower electrical resistivity and a significantly higher power factor in comparison with the uncoated ones. The glass-ceramic coating is self-reparable at 600 °C, as demonstrated by the complete sealing of an induced scratch on its surface.

Country
Italy
Keywords

glass-ceramic; coating; thermoelectric; oxidation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%