
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Preparation of clinker from paper pulp industry wastes

The production of paper pulp by the Kraft method generates considerable amounts of wastes. Namely, lime mud generated in the recovery circuit of chemical reagents, biological sludge from the wastewater treatment of wood digestion process and fly ash collected in the fluidized bed combustor used to generate electricity from biomass burning. The final destination of such wastes is an important concern, since environmental regulations are becoming stricter regarding their landfill. Driven by this fact, industries are looking for more sustainable solutions, such as the recycling in distinct products. This work tested these wastes as secondary raw materials to produce clinker/cement that was then experienced in mortar formulations. The first step involved the residues detailed characterization and a generated amounts survey. Then, specific but simple steps were suggested, aiming to facilitate transport and manipulation. Distinct blends were prepared and fired in order to get belitic and Portland clinkers. The Portland clinkers were processed at lower temperatures than the normally used in the industry due to the presence of mineralizing impurities in some wastes. Belite-based cements were used to produce mortars that developed satisfactory mechanical strength and did not reveal signs of deterioration or durability weaknesses.
- University of Aveiro Portugal
- University of Aveiro Portugal
Paper, FLY-ASH, Compressive Strength, SEWAGE-SLUDGE, PHASE-TRANSFORMATIONS, Industrial Waste, Coal Ash, ECO-CEMENT, Waste Management, MANAGEMENT, Particle Size, Sewage, PYROLYSIS, Construction Materials, Oxides, BRICK PRODUCTION, Calcium Compounds, SOIL, MILL WASTE, Chemical Industry, RESIDUES
Paper, FLY-ASH, Compressive Strength, SEWAGE-SLUDGE, PHASE-TRANSFORMATIONS, Industrial Waste, Coal Ash, ECO-CEMENT, Waste Management, MANAGEMENT, Particle Size, Sewage, PYROLYSIS, Construction Materials, Oxides, BRICK PRODUCTION, Calcium Compounds, SOIL, MILL WASTE, Chemical Industry, RESIDUES
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).112 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
