
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A bio-functions integration microcosm: Self-immobilized biochar-pellets combined with two strains of bacteria to remove atrazine in water and mechanisms

pmid: 31629595
A bio-functions integration microcosm: Self-immobilized biochar-pellets combined with two strains of bacteria to remove atrazine in water and mechanisms
A self-immobilization method for microorganisms was developed based on fungal pellets. Generally, pellets have some problems such as cell leakage, cell loading limitation and low mechanical strength. Therefore, biochar was applied to overcome these disadvantages. Atrazine degradable microorganism Arthrobacter sp. ZXY-2 was immobilized by Aspergillus niger Y3 pellets. After adding biochar with optimal dosage (0.006 g biochar for 0.3 g pellets with ZXY-2), the self-immobilized biomixture (SIB) removed 50 mg /L atrazine rapidly within 1 h, which was 61% higher compared to pellets without biochar. The kinetic adsorption results showed that the biosorption of biochar by pellets followed a pseudo-second-order kinetic model. The ATZ removal ability and reusability of SIB were significantly increased by biochar. The results showed that the addition of biochar could enhance the connection between ZXY-2 and pellets based carrier, and the favorable biodegradation pH of ZXY-2 changed to 6 and 10. Several analyses such as ζ-potential measurements, FTIR, XPS, SEM-EDS, and elemental analyses were performed to evaluate the mechanism of action of SIB. To enhance the ATZ degradation by single strain, Agrobacterium, sp WL-1 was isolated and added. The metabolic pathways and their function complementation were studied. Furthermore, a biomass integration model for wastewater treatment was proposed herein.
- Harbin Institute of Technology China (People's Republic of)
- Harbin Institute of Technology China (People's Republic of)
- State Key Laboratory of Urban Water Resources and Water Environment China (People's Republic of)
- State Key Laboratory of Urban Water Resources and Water Environment China (People's Republic of)
Herbicides, Agrobacterium, Hydrogen-Ion Concentration, Water Purification, Kinetics, Biodegradation, Environmental, Charcoal, Atrazine, Aspergillus niger, Biomass, Arthrobacter, Water Microbiology, Water Pollutants, Chemical
Herbicides, Agrobacterium, Hydrogen-Ion Concentration, Water Purification, Kinetics, Biodegradation, Environmental, Charcoal, Atrazine, Aspergillus niger, Biomass, Arthrobacter, Water Microbiology, Water Pollutants, Chemical
3 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).79 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
