Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Hazardous...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Hazardous Materials
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A bio-functions integration microcosm: Self-immobilized biochar-pellets combined with two strains of bacteria to remove atrazine in water and mechanisms

Authors: Tianmiao Yu; Li Wang; Fang Ma; Yujiao Wang; Shanshan Bai;

A bio-functions integration microcosm: Self-immobilized biochar-pellets combined with two strains of bacteria to remove atrazine in water and mechanisms

Abstract

A self-immobilization method for microorganisms was developed based on fungal pellets. Generally, pellets have some problems such as cell leakage, cell loading limitation and low mechanical strength. Therefore, biochar was applied to overcome these disadvantages. Atrazine degradable microorganism Arthrobacter sp. ZXY-2 was immobilized by Aspergillus niger Y3 pellets. After adding biochar with optimal dosage (0.006 g biochar for 0.3 g pellets with ZXY-2), the self-immobilized biomixture (SIB) removed 50 mg /L atrazine rapidly within 1 h, which was 61% higher compared to pellets without biochar. The kinetic adsorption results showed that the biosorption of biochar by pellets followed a pseudo-second-order kinetic model. The ATZ removal ability and reusability of SIB were significantly increased by biochar. The results showed that the addition of biochar could enhance the connection between ZXY-2 and pellets based carrier, and the favorable biodegradation pH of ZXY-2 changed to 6 and 10. Several analyses such as ζ-potential measurements, FTIR, XPS, SEM-EDS, and elemental analyses were performed to evaluate the mechanism of action of SIB. To enhance the ATZ degradation by single strain, Agrobacterium, sp WL-1 was isolated and added. The metabolic pathways and their function complementation were studied. Furthermore, a biomass integration model for wastewater treatment was proposed herein.

Keywords

Herbicides, Agrobacterium, Hydrogen-Ion Concentration, Water Purification, Kinetics, Biodegradation, Environmental, Charcoal, Atrazine, Aspergillus niger, Biomass, Arthrobacter, Water Microbiology, Water Pollutants, Chemical

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    79
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
79
Top 1%
Top 10%
Top 1%