Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Hazardous...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Hazardous Materials
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficient degradation of indole by microbial fuel cell based Fe2O3-polyaniline-dopamine hybrid composite modified carbon felt anode

Authors: Keren Shi; Ping Xue; Rui Li; Li Peng; Lan Ma; Minjie Jian;

Efficient degradation of indole by microbial fuel cell based Fe2O3-polyaniline-dopamine hybrid composite modified carbon felt anode

Abstract

Indole is a high-toxic refractory nitrogen-containing compound that could cause serious harm to the human and ecosystem. It has been a challenge to develop economical and efficient technology for degrading indole. Microbial fuel cell (MFC) has great potential in the removal of organic pollutants utilizing microorganisms as catalysts to degrade organic matter into the nutrients. Herein, a novel anode of Fe2O3-polyaniline-dopamine hybrid composite modified carbon felt (Fe2O3-PDHC/CF) was prepared by electrochemical deposition. The degradation efficiency of indole by the MFC loading Fe2O3-PDHC/CF anode was up to 90.3 % in 120 h operation, while that of the MFC loading CF anode was only 44.0 %. The maximum power density of the MFC loading Fe2O3-PDHC/CF anode was 3184.4 mW·m-2, increasing 113 % compared to the MFC loading CF anode. The superior performances of the MFC with Fe2O3-PDHC surface-modified anode owned to the synergistic effect of high conductive Fe2O3 and admirably biocompatible polyaniline-dopamine. MFC with the Fe2O3-PDHC/CF anode could produce considerable electricity and effectively degrade indole in water, which demonstrated a practical approach for the efficient degradation of refractory organic compounds in wastewater.

Related Organizations
Keywords

Aniline Compounds, Indoles, Bioelectric Energy Sources, Dopamine, Electrochemical Techniques, Ferric Compounds, Carbon, Water Purification, Electricity, Electrodes, Water Pollutants, Chemical

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%