
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Improved differential relay for bus bar protection scheme with saturated current transformers based on second order harmonics

AbstractDifferential relays security to the external faults is affected by the saturation of branches’ current transformers (CTs). In this paper, a simple scheme is proposed to enhance the security of differential numerical relay by extracting the 2nd order harmonic using Fast Fourier Transform (FFT) to produce a restraint signal to inhibit the relay operation during external faults. The operation signal of differential relay is produced by comparing the vector addition of secondary currents of branches’ CTs (differential current) with pre-set value; the restraint signal is produced by comparing the algebraic sum of 2nd order harmonic of individual secondary currents with the 2nd order harmonic of differential current. The proposed scheme is investigated using PSCAD/EMTDC simulation and tested during internal and external faults for saturated CTs. The obtained results reveal how this scheme is effective and secure to the external faults for different suggested scenarios. The proposed scheme is using the simplest technique of signal processing compared to other proposed techniques.
- King Saud University Saudi Arabia
- Aswan University Egypt
- King Saud University Saudi Arabia
Engineering (General). Civil engineering (General), Bus bar, CT saturation, Differential relay, 2nd order harmonic, TA1-2040, Engineering(all)
Engineering (General). Civil engineering (General), Bus bar, CT saturation, Differential relay, 2nd order harmonic, TA1-2040, Engineering(all)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
