Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of King Saud...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of King Saud University: Science
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermodynamic equilibrium modeling of biomass gasification: Effects of operating conditions on gasifier performance

Authors: Dejan Cvetinović; Aleksandar Erić; Nada Milutinović; Nevena Petrov; Jovana Anđelković; Vukman Bakić;

Thermodynamic equilibrium modeling of biomass gasification: Effects of operating conditions on gasifier performance

Abstract

Biomass has remarkable potential to reduce harmful emissions and ensure stable and sustainable energy production. In this paper, various parameters such as operating temperature, type of gasifying agent, air–fuel ratio and steam-fuel ratio are investigated on the qualitative characteristics of the syngas obtained from biomass gasification. The qualitative indicators considered were the percentage of combustible components under the energy aspect and the percentage of undesirable components under the environmental aspect. The composition of the syngas was determined for a temperature range of 500–1000 °C as an equilibrium composition using the Gibbs free energy minimisation method. The results showed that increasing the gasification temperature above 900 °C had a positive effect on the energy and environmental properties of the syngas. Air and water vapour were selected as possible gasifying agents. The results showed that water vapour was significantly more favourable than air as a gasifying agent in terms of syngas quality. In the best case, the H2 yield for gasification with air is 35 %vol, while this value reaches 65 %vol for gasification with steam. In addition to the type, the ratio of the gasifying agent to the amount of fuel was also analysed. The analysis showed that it was more favourable to carry out the gasification process at lower air-to-fuel and steam-to-fuel ratios, which is consistent with the work of other authors.

Country
Serbia
Keywords

Gasification agent, Air-to-fuel ratio, Steam-to-fuel ratio, Biomass, Gibbs free energy minimization, Gasification

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 22
    download downloads 23
  • 22
    views
    23
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
5
Average
Average
Top 10%
22
23
Green
gold