
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Ultrahigh energy storage density and efficiency in A/B-site co-modified silver niobate relaxor antiferroelectric ceramics

AgNbO3-based antiferroelectric ceramics can be used to prepare dielectric ceramic materials with energy storage performance. However, their efficiency is much lower than that of relaxors, which is one of the biggest obstacles for their applications. To overcome this problem, AgNbO3 ceramics co-doped with Eu3+ and Ta5+ at the A- and B-sites were prepared in this work. The Ag0.97Eu0.01Nb0.85Ta0.15O3 sample has a Wr of 6.9 J/cm3 and an η of 74.6%. The ultrahigh energy storage density and efficiency of Ag0.97Eu0.01Nb0.85Ta0.15O3 has been ascribed to the synergistic effect of the increase in the breakdown electric field, the enhancement of antiferroelectric stability, the construction of multiphase coexistence, and the modification of the domain structure morphology. The Ag0.97Eu0.01Nb0.85Ta0.15O3 ceramic is expected to be one of the options for preparing dielectric capacitors.
- Xi'an Jiaotong University China (People's Republic of)
- Shaanxi Normal University China (People's Republic of)
- Shaanxi Normal University China (People's Republic of)
- Xi’an Jiaotong-Liverpool University China (People's Republic of)
Energy storage, AgNbO3-Based ceramics, Dielectric capacitors, TA401-492, Antiferroelectric, Materials of engineering and construction. Mechanics of materials
Energy storage, AgNbO3-Based ceramics, Dielectric capacitors, TA401-492, Antiferroelectric, Materials of engineering and construction. Mechanics of materials
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
