Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Network a...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Network and Computer Applications
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Classical and swarm intelligence based routing protocols for wireless sensor networks: A survey and comparison

Authors: Zungeru, Adamu Murtala; Ang, Li Minn; Seng, Kah Phooi;

Classical and swarm intelligence based routing protocols for wireless sensor networks: A survey and comparison

Abstract

High efficient routing is an important issue for the design of wireless sensor network (WSN) protocols to meet the severe hardware and resource constraints. This paper presents a comprehensive survey and comparison of routing protocols in WSNs. The first part of the paper surveys state-of-the-art routing protocols in WSNs from classical routing protocols to swarm intelligence based protocols. The routing protocols are categorized based on their computational complexity, network structure, energy efficiency and path establishment. The second part of the paper presents a comparison of a representative number of classical and swarm based protocols. Comparing routing protocols in WSNs is currently a very challenging task for protocol designers. Often, much time is required to re-create and re-simulate algorithms from descriptions in published papers to perform the comparison. Compounding the difficulty is that some simulation parameters and performance metrics may not be mentioned. We see a need in the research community to have standard simulation and performance metrics for comparing different protocols. To this end, the final part of the paper re-simulates different protocols using a Matlab based simulator: routing modeling application simulation environment (RMASE), and gives simulation results for standard simulation and performance metrics which we hope will serve as a benchmark for future comparisons for the research community.

Country
Australia
Keywords

Artificial intelligence, MATLAB, Surveys, Network structures, Routing protocols, Engineering, Swarm Intelligence, RMASE, Different protocols, Ant based routing, Routing, Simulation parameters, 621, Resource Constraint, Wireless sensor networksAnt based routing, Wireless sensor networks, Modeling applications, 004, Benchmarking, Energy efficiency, Performance metrics, Research communities, Efficient routing, Protocol designers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    233
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
233
Top 1%
Top 1%
Top 1%