Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Natural G...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Natural Gas Science and Engineering
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Co-gasification of coal and biomass wastes in an entrained flow gasifier: Modelling, simulation and integration opportunities

Authors: Ali, Dalia A., Eng; Gadalla, Mamdouh A., Prof.; Abdelaziz, Omar Y; Hulteberg, Christian P.; Ashour, Fatma H., Prof.;

Co-gasification of coal and biomass wastes in an entrained flow gasifier: Modelling, simulation and integration opportunities

Abstract

Gasification processes convert carbon-containing material into syngas through chemical reactions in the presence of gasifying agents such as air, oxygen, and steam. Syngas mixtures produced from such processes consist mainly of carbon monoxide (CO), hydrogen (H2), carbon dioxide (CO2), and methane (CH4); this gas can be directly utilised as a fuel to produce electricity or steam. Besides, it is regarded as a basic feedstock within the petrochemical and conventional refining industries, producing various useful products like methanol, hydrogen, ammonia, and acetic acid. In this work, a rigorous process model is developed to simulate the co-gasification of coal-biomass blends through an entrained flow gasifier. The proposed model is tested originally for American coal. The model validation is made against literature data and results show good agreement with these practical data, providing a robust basis for integration and retrofitting applications. Effects of critical parameters, comprising gasification temperature, steam/O2 ratio, and feedstock variability on the syngas composition and gasifier efficiency are studied. The developed model is further applied in a project to revamp an existing Egyptian natural gas-based power plant, replacing its standard fuel with coal-rice straw blends. The revamping project integrates the existing plant with a gasification unit burning a blend of coal and rice straw to replace the conventional fuel used. The feedstock used constitutes a dry Egyptian coal and a coal-rice straw blend (10 wt% rice straw), gathered locally. Different blending scenarios are investigated and the best performance is achieved with coal to rice straw ratio of 90:10 on weight basis, attaining 85.7% cold gas efficiency and significant economic savings. Results showed that the total annualised cost of the revamped process decreased by 52.7% compared with a newly built integrated gasification combined cycle (IGCC) unit. (Less)

Country
Egypt
Keywords

690, Coal-rice straw blends, 330, Computer-Aided Engineering and Design, Chemical Engineering, Syngas, 620, Engineering, IGCC, Revamping, Biomass, Gasification

Powered by OpenAIRE graph
Found an issue? Give us feedback