Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Natural G...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Natural Gas Science and Engineering
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gas breakthrough pressure of tight rocks: A review of experimental methods and data

Authors: Ziqiu Xue; Bo Liu; Xiaofei Fu; Tong Wu; Tong Wu; Zhejun Pan; Luke D. Connell;

Gas breakthrough pressure of tight rocks: A review of experimental methods and data

Abstract

Abstract Breakthrough pressure is a key parameter of the caprock sealing ability for gas reservoirs. It has also become an important parameter for gas production from tight reservoirs, such as shale gas reservoirs, as water in these tight formations may require gas to overcome the breakthrough pressure before being produced. Laboratory measurement is essential to obtain the breakthrough pressure because no field methods can accurately estimate it. In this review article, the definition, the experimental methods, and experimental data for breakthrough pressure on tight rocks are reviewed. The advantages and issues of each experimental method are discussed. Furthermore, the relationships between breakthrough pressure and rock properties, especially its permeability, are investigated. It is found that breakthrough pressure has a close relationship with pore structure and most of the experimental data show that it has a power law relationship with absolute permeability. Moreover, water saturation, gas type, and effective stress are all found to have an impact on the breakthrough pressure. Finally, future research topics are proposed, including investigating sample length on breakthrough pressure measurement and developing more theoretically based models for breakthrough pressure with regards to absolute permeability or other measurable rock properties.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 1%
Top 10%
Top 1%
bronze