
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Numerical simulations of viscoelastic film stretching and retraction

Understanding how the deformation history affects the retraction dynamics of viscoelastic liquid films can provide a tool to design materials. In this paper, we investigate the stretching and retraction of circular viscoelastic liquid films through finite element numerical simulations. We consider a discoid domain made of a viscoelastic liquid. Its central hole is first ‘closed’ and then released, being left free to open under the effect of inertial, surface, viscous, and elastic forces. We perform a parametric study of film retraction, aiming at understanding the effects of the physical and operating parameters on it. In particular, we consider different viscoelastic constitutive equations, namely, Oldroyd-B, Giesekus (Gsk), and Phan Thien-Tanner (PTT) models, and different values of the film initial thickness. For each liquid and geometry, we investigate the effects of the film stretching rate and of liquid inertia, elasticity, and flow-dependent viscosity on the dynamics of the hole opening.
- Eindhoven University of Technology Netherlands
- University Federico II of Naples Italy
Film retraction, Mechanical Engineering, Applied Mathematics, Elastic energy, Direct numerical simulations, Condensed Matter Physics, Materials Science(all), Viscoelastic liquid, Chemical Engineering(all)
Film retraction, Mechanical Engineering, Applied Mathematics, Elastic energy, Direct numerical simulations, Condensed Matter Physics, Materials Science(all), Viscoelastic liquid, Chemical Engineering(all)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
