Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Building ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Building Engineering
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental analysis on the active and passive cool roof systems for industrial buildings in Malaysia

Authors: Jing Han Beh; Kah Pin Chen; Lip Huat Saw; Tan Ching Ng; Ming Kun Yew; Durairaj Rajkumar; Ming Chian Yew;

Experimental analysis on the active and passive cool roof systems for industrial buildings in Malaysia

Abstract

Abstract This piece of research presents the capability of active and passive cool roof systems, which is designed to reduce the heat transmission into an attic through the metal deck roofing for industrial buildings in Malaysia. In this study, an ideal cool roof system focusing on utilizing solar energy, cavity ventilation and thermal reflective coating (TRC) were employed and investigated. This technique is one of the most innovative and sustainable practices at reducing the energy consumption that provide buildings with comfortable indoor conditions through natural means. The four cool roof models were designed and built in active and passive systems to examine the effect of attic temperature reduction. Application of TRC can significantly reduce the heat absorption of the metal roof. The roof and attic temperatures of the roof models were measured to determine the performance of cool roof system. The roof design (d) results indicate a great reduction at about 15 °C in the attic air temperature compared to normal roof. The outstanding performance is due to the cool roof system that integrated TRC, improved moving air cavity (MAC)-solar powered fans and opened attic inlet comprise the ability to reflect the sunlight and circulate the hot air efficiently.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 1%
Top 10%
Top 10%
bronze