Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archive ouverte UNIG...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Building Engineering
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Estimation of energy savings potential through hydraulic balancing of heating systems in buildings

Authors: Cho, Haein; Cabrera Santelices, Jose Daniel; Patel, Martin;

Estimation of energy savings potential through hydraulic balancing of heating systems in buildings

Abstract

Abstract Hydraulic balancing of heat distribution systems in buildings plays an important role in improving indoor thermal conditions as well as reducing energy consumption for space heating. Building energy models typically do not incorporate thermal comfort while it is essential for hydraulic balancing to do so. This paper proposes a methodology that assesses the impact of hydraulic balancing on the energy savings potential while ensuring thermal comfort of the occupants. The proposed methodology is composed of three parts, i.e. characterization, estimation and scenario analysis. First, we characterize indoor air temperature level of each individual flat in buildings belonging to the same central heating system to examine temperature variation among the flats. Second, thermal comfort under given indoor conditions is predicted by means of the PMV-PPD model (predicted mean vote-predicted percentage of dissatisfied) and the optimal indoor air temperature where most of the occupants feel comfortable is estimated. We calculate potential energy savings assuming that hydraulic balancing ensures ideal conditions where the indoor air temperature stays at the optimal level, thereby maintaining thermal acceptance of at least 94% of the occupants. A scenario analysis covering different types of occupant behavior allows to estimate the energy savings potential under different conditions. We test the applicability of the proposed methodology by applying it to a group of existing buildings in Geneva, Switzerland during the cold season. The case study demonstrates that there is an energy savings potential between 2% and 14%. We also discuss how the simulation results can guide practitioners operating hydraulic balancing programs.

Country
Switzerland
Related Organizations
Keywords

info:eu-repo/classification/ddc/333.7-333.9, info:eu-repo/classification/ddc/550, Thermal comfort, Hydraulic balancing, PMV-PPD, Thermal energy savings, ddc: ddc:333.7-333.9, ddc: ddc:550

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%