Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Building ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Building Engineering
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Life-cycle cost and carbon footprint analysis for light-framed residential buildings subjected to tornado hazard

Authors: Katrina Simonen; Aiwen Xie; Pramodit Adhikari; Hussam Mahmoud; Bruce R. Ellingwood;

Life-cycle cost and carbon footprint analysis for light-framed residential buildings subjected to tornado hazard

Abstract

Abstract Light-frame wood building construction dominates the single-family residential home market in the United States. Such buildings are susceptible to damage from extreme winds due to hurricanes in coastal areas and tornados in the Midwest. The consequences of extreme winds on the built environment and on social and economic institutions within the community can be severe and are likely to increase in the coming decades as a result of increases in urbanization and economic development and the potential impacts of changing climate in hazard prone areas. Current building practices provide minimum standards for occupant safety and health, including structural integrity, water and sanitation, lighting, ventilation, means of egress and fire protection. However, they generally do not consider building resilience, which includes robustness and an ability to recover following extreme natural hazard events. Nor do they address sustainability, the notion that building design, construction and rehabilitation should not adversely impact the environment. In this paper, we establish a generalized cost and carbon footprint life-cycle analysis methodology for examining the benefits of different building practices for residential light-frame wood construction subjected to tornado hazards. A multi-objective approach is used to reveal tradeoffs between resilient and sustainable practices for typical residential construction. We show that when the life cycle of a typical residence is considered, a balance between resilience, sustainability and cost might be achieved in design and rehabilitation of residential building construction for tornado hazards.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%