Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao RE.PUBLIC@POLIMI Res...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Building Engineering
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data-driven decision support system for building stocks energy retrofit policy

Authors: F. Re Cecconi; A. Khodabakhshian; L. Rampini;

Data-driven decision support system for building stocks energy retrofit policy

Abstract

In most European countries, residential assets account for as much as 85% of the building stock floor area and are, on average, very outdated and energy inefficient. Moreover, the European Commission published the EU Green Deal invigorating higher retrofit of private and public buildings. Nowadays, public authorities collect extensive datasets to analyze the existing building stock; however, the complex and diverse scenario makes the definition of retrofit policies cumbersome. The biggest hurdle is often linked to the high cost of acquiring information. The presented research tries to overcome these issues by introducing a decision support system for retrofit policymaking from low-cost data-driven approaches. The method is based on: i) clustering techniques to divide building assets into groups with similar characteristics and energy consumption, and ii) Montecarlo simulation to compute each cluster's energy savings based on different retrofit scenarios. The proposed method has been successfully applied to an extensive portfolio of residential assets in Lombardy Region in Italy, called the CENED database, with over one million assets. As a result, the introduced method defines the optimum retrofit scenario with a low cost of information (e.g., without expensive surveys to gather data on existing assets' characteristics and performance indicators) and determines the number of assets to be retrofitted along with the expected energy savings. This data-driven approach can be easily updated given new renovations and status changes in the built environment, making it useable for the long term or in different regions. To summarize, data-driven solutions are now required to accomplish the European Union's decarbonization ambitions, and the proposed method helps decision-makers choose better energy retrofit policies for the built environment.

Country
Italy
Related Organizations
Keywords

Building stocksEnergy retrofitDecision support systemMachine learningClusteringEnergy policy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Top 10%