Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Building Engineering
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High-performance poplar-polyethylene laminates based on microwave-assisted acetic acid pretreatment process with potential application in construction

Authors: Yang Wang; Haoran Ye; Changlei Xia; Yang Shi; Zhongfeng Zhang; Su Shiung Lam; Rock Keey Liew; +2 Authors

High-performance poplar-polyethylene laminates based on microwave-assisted acetic acid pretreatment process with potential application in construction

Abstract

The issue of white pollution has gained more attention in recent years on a global scale. Using fast-growing wood and plastic waste to produce wood-plastic composites can effectively increase the plastic recovery rate while relieving the pressure of structural shortage of wood resources in many countries. Hence, this study demonstrates an innovative approach to prepare a good-quality wood-plastic laminates based on wood-plastic composites. Poplar veneer was first pretreated with microwave-assisted acetic acid followed by a one-step thermal forming process with powdered polyethylene (PE) to produce the glue-free wood-plastic laminates. It was found that the pretreated composite has a tensile strength of up to 280 MPa and specific strength of up to 205.98 kNm/kg. The excellent mechanical properties can be attributed to the mechanical interlock between wood fibre and polyethylene, plus the closer bond among the fibres induced by cell wall collapses during hot-pressing. Furthermore, the water contact angle of the composite surface remains at about 84° after 10 s. That suggests its good surface waterproof performance which is attributed to the partial degradation of hemicellulose during the pretreatment and the coating of wood fiber with polyethylene. Overall, we have developed glue-free, high-strength, and heat-resistant wood-plastic laminates applicable to interior furniture and outdoor building facilities. This is imperative for protecting the ecological environment and reducing the pressure on structural shortages of wood resources worldwide.

Keywords

Wood-plastic laminates, Sustainability, Recycled plastics, Microwave-assisted acid treatment, Poplar

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research