Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1016/j.joei...
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterization of the physicochemical and structural evolution of biomass particles during combined pyrolysis and CO2 gasification

Authors: John Eshun; Lijun Wang; Emmanuel Ansah; Abolghasem Shahbazi; Keith Schimmel; Vinayak Kabadi; Shyam Aravamudhan;

Characterization of the physicochemical and structural evolution of biomass particles during combined pyrolysis and CO2 gasification

Abstract

Abstract The combination of pyrolysis and CO2 gasification was studied to synergistically improve the syngas yield and biochar quality. The subsequent 60-min CO2 gasification at 800 °C after pyrolysis increased the syngas yield from 23.4% to 40.7% while decreasing the yields of biochar and bio-oil from 27.3% to 17.1% and from 49.3% to 42.2%, respectively. The BET area of the biochar obtained by the subsequent 60-min CO2 gasification at 800 °C was 384.5 m2/g, compared to 6.8 m2/g for the biochar obtained by the 60-min pyrolysis at 800 °C, and 1.4 m2/g for the raw biomass. The biochar obtained above 500 °C was virtually amorphous.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 10%
Top 10%
Top 10%