Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Power Sources
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
PolyPublie
Article . 2009
Data sources: PolyPublie
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Temperature and performance variations along single chamber solid oxide fuel cells

Authors: Michel Meunier; Bertrand Morel; Sylvio Savoie; Teko W. Napporn; Réal Roberge;

Temperature and performance variations along single chamber solid oxide fuel cells

Abstract

Abstract The catalytic activity of single chamber solid oxide fuel cells (SC-SOFCs) with respect to hydrocarbon fuels induces a major overheating of the fuel cell, temperature variations along its length, and changes in the original fuel/air composition mainly over the anode component. This paper assesses the temperature gradients and the variations in performance along electrolyte-supported Ni-YSZ/YSZ/LSM cells fed with methane gas. The investigations are performed in a useful range of CH4/O2 ratios between 1.0 and 2.0, in which the furnace temperature and flow rate of methane–air mixtures are held constant at 700 °C and 450 sccm, respectively. Electrochemical impedance spectroscopy (EIS) is used to sense the temperature at the location where smaller size cathodes are positioned on the opposite side of a full-size anode. Due to temperature increases, cells always perform better when the small cathodes are located at the inlet as well as at a CH4/O2 ratio of 1.0. With an increase in ratio, the results show the presence of artefacts due to the use of an active LSM material for the combustion of methane, and open-type gas distribution plates for the single chamber reactor.

Country
Canada
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%