Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electrical circuit model of a vanadium redox flow battery using extended Kalman filter

Authors: Hamzah Ahmad; Muhammad Sharfi Najib; Saifudin Razali; M.N. Abu Seman; Mohd Rusllim Mohamed;

Electrical circuit model of a vanadium redox flow battery using extended Kalman filter

Abstract

Abstract This paper presents an equivalent electrical circuit model for a unit cell all-vanadium redox flow battery (V-RFB). The developed V-RFB model consists of an open-circuit cell potential (Ecell(ORP)) which is in series with an ohmic internal resistance and parallel with an n-Resistor–Capacitor (n-RC) network. The Ecell(ORP) represents an intrinsic relationship of the V-RFB state-of-charge (SOC), while the n-RC networks represent the polarization characteristic and dynamic behaviour of the V-RFB. The Ecell(ORP) and ohmic resistance parameters are obtained through a direct measurement of an experimental setup of 25 cm2 unit cell laboratory unit V-RFB, whereas the two pairs of RC network parameters are identified through a recursive algorithm of extended Kalman filter (EKF). The accuracy of this model is verified with different pulse voltages at a few values of SOCs. Ultimately, the model is validated with an experimental charge–discharge characterisation of V-RFB system. Suggestion for system improvement is highlighted.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
99
Top 1%
Top 10%
Top 10%