Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Power Sources
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simulation and evaluation of capacity recovery methods for spiral-wound lithium ion batteries

Authors: Ye, Y.; Shi, Y.; Saw, L.H.; Tay, A.A.O.;

Simulation and evaluation of capacity recovery methods for spiral-wound lithium ion batteries

Abstract

Abstract An electrochemical model is developed to investigate capacity recovery methods for cycled lithium ion batteries. Different capacity recovery methods are evaluated and compared. The center recovery method for commercial batteries is found to be impractical because it causes severe solid surface concentration gradients which may harm the batteries. On the contrary, the center recovery method for novel batteries with porous current collector sheets is better than the bottom recovery method because smaller solid surface concentration gradients are detected and less relaxation time is required during capacity recovery. Capacity recovery methods which discharge negative electrodes is superior to those which discharge positive electrodes of cycled batteries as smaller solid surface concentration gradients is generated and less relaxation time is required at the same discharging current.

Country
Singapore
Related Organizations
Keywords

Spiral-wound, Porous current collector, 600, Capacity recovery, Lithium ion battery

Powered by OpenAIRE graph
Found an issue? Give us feedback