

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Hydrothermal synthesis of microalgae-derived microporous carbons for electrochemical capacitors

handle: 10261/113963
N-doped highly microporous carbons have been successfully fabricated from N-rich microalgae by the combination of low-cost hydrothermal carbonization and industry-adopted KOH activation processes. The hydrothermal carbonization process was found to be an essential step for the successful conversion of microalgae into a carbon material. The materials thus synthesized showed BET surface areas in the range ∼1800–2200 m2 g−1 exclusively ascribed to micropores. The carbons showed N contents in the 0.7–2.7 wt.%, owing to the use of N-rich microalgae as a carbon precursor. When tested in symmetric double layer capacitors (occasionally called supercapacitors) based on aqueous LiCl electrolytes, pseudocapacitance was only observable for the sample synthesized at the lowest temperature, 650 °C, which is the one exhibiting the largest amount of N- and O-containing groups. The samples synthesized at 700–750 °C exhibited excellent rate capability (only 20% of capacitance loose at 20 A g−1), with specific capacitances of 170–200 F g−1 at 0.1 A g−1. These materials showed excellent long-term cycling stability under high current densities. The financial support for this research work provided by the US Army Research Office (grant W911NF-12-1-0259) and by the Spanish MINECO (MAT2012-31651) is gratefully acknowledged. M.S. thanks the Spanish MINECO for the award of a Ramón y Cajal contract. Peer reviewed
- Queen Mary University of London United Kingdom
- Instituto Nacional del Carbón Spain
- Institute for Advanced Sustainability Studies Germany
- Research Institute for Sustainability at GFZ Germany
- Georgia Institute of Technology United States
Energy storage, Hydrothermal carbonization, Carbon, Biomass, Porosity
Energy storage, Hydrothermal carbonization, Carbon, Biomass, Porosity
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).166 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1% visibility views 56 download downloads 119 - 56views119downloads
Data source Views Downloads DIGITAL.CSIC 56 119


