
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Novel application of differential thermal voltammetry as an in-depth state-of-health diagnosis method for lithium-ion batteries

handle: 10044/1/28862
Novel application of differential thermal voltammetry as an in-depth state-of-health diagnosis method for lithium-ion batteries
Abstract Understanding and tracking battery degradation mechanisms and adapting its operation have become a necessity in order to enhance battery durability. A novel use of differential thermal voltammetry (DTV) is presented as an in-situ state-of-health (SOH) estimator for lithium-ion batteries. Accelerated ageing experiments were carried on 5Ah commercial lithium-ion polymer cells operated and stored at different temperature and loading conditions. The cells were analysed regularly with various existing in-situ diagnosis methods and the novel DTV technique to determine their SOH. The diagnosis results were used collectively to elaborate the degradation mechanisms inside the cells. The DTV spectra were decoupled into individual peaks, which each represent particular phases in the negative and positive electrode combined. The peak parameters were used to quantitatively analyse the battery SOH. A different cell of the same chemistry with unknown degradation history was then analysed to explore how the cell degraded. The DTV technique was able to diagnose the cell degradation without relying on supporting results from other methods nor previous cycling data.
- Imperial College London United Kingdom
- Department of Earth Science and Engineering Imperial College London United Kingdom
- Department of Earth Sciences and Engineering Imperial College London United Kingdom
- Department of Earth Science and Engineering Imperial College London United Kingdom
- Department of Earth Sciences and Engineering Imperial College London United Kingdom
Energy, 03 Chemical Sciences, 09 Engineering
Energy, 03 Chemical Sciences, 09 Engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).135 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
