Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Power Sou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Power Sources
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
VBN
Article . 2018
Data sources: VBN
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Low-complexity online estimation for LiFePO4 battery state of charge in electric vehicles

Authors: Meng, Jinhao; Ricco, Mattia; Acharya, Anirudh Budnar; Luo, Guangzhao; Swierczynski, Maciej; Stroe, Daniel-Ioan; Teodorescu, Remus;

Low-complexity online estimation for LiFePO4 battery state of charge in electric vehicles

Abstract

This paper proposes a low-complexity online state of charge estimation method for LiFePO4 battery in electrical vehicles. The proposed method is able to achieve accurate state of charge with less computational efforts in comparison with the nonlinear Kalman filters, and also can provide state of health information for battery management system. According to the error analysis of equivalent circuit model with two resistance and capacitance, two proportional-integral filters are designed to compensate the errors from inaccurate state of charge and current measurements, respectively. An error dividing process is proposed to tune the contribution of each filter to the finial estimation results, which enhances the validation and accuracy of the proposed method. Recursive least squares filter can provide the state of health information and updates the parameters of battery model online to eliminate the errors caused by parameters uncertainty. The proposed method is compared with extend Kalman filter in regards to accuracy and execution time. The execution time of the proposed method is measured on Zynq board platform to validate its suitability for online implementation. In this paper, the proposed method is able to obtain less than 1% error for state of charge estimation.

Countries
Denmark, Italy
Keywords

Low-complexity, State of charge, Online estimation, LiFePO4 battery; Low-complexity; Online estimation; State of charge; Renewable Energy, Sustainability and the Environment; Energy Engineering and Power Technology; Physical and Theoretical Chemistry; Electrical and Electronic Engineering, LiFePO battery

Powered by OpenAIRE graph
Found an issue? Give us feedback