
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Bimetal-decorated nanocarbon as a superior electrocatalyst for overall water splitting

Abstract Heteroatom and monometal decorated carbons (e.g., Fe-N/C or Co-N/C) are reported as effective oxygen reduction catalysts. However, they are seldom investigated for overall water splitting. Additionally, it is a significant challenge to increase the heteroatom content in carbon and achieve performance comparable or superior to precious metal-based catalysts. Here, NiFe-decorated, nitrogen, phosphorus, sulfur tri-doped nanocarbon with oxygen-containing groups, i.e., NiFe-N, P, S/C is reported as a highly-active electrocatalyst for overall water splitting. The carbons are prepared by one-step template-free pyrolysis. Alfalfa, one of the natural biomass with highest N: C ratio and significant P and S, works as the sole carbon and heteroatom source. During preparation, crucial factors including total amount of added transition metals, Ni to Fe molar ratio, and pyrolysis temperature, are optimized. Ni0.75Fe0.25-N, P, S/C prepared at 900 °C exhibits the best oxygen evolution reaction, hydrogen evolution reaction, and overall water splitting activity and stability. This material even exceeds the benchmark RuO2 in catalysing oxygen evolution reaction. Its overall water splitting activity is comparable to Pt/C-RuO2, making it one of the best water splitting electrocatalysts. This exciting performance is attributed to the high heteroatom level ((N+P+S+O): C = 27.6 at.%), as well as the bimetal decoration.
- Hunan Women'S University China (People's Republic of)
- Hunan Women'S University China (People's Republic of)
- Hong Kong University of Science and Technology (香港科技大學) China (People's Republic of)
- Hong Kong University of Science and Technology (香港科技大學) China (People's Republic of)
- Hong Kong Polytechnic University China (People's Republic of)
660, Electrocatalyst, Nanocarbon, Biomass, Water splitting, Bimetal
660, Electrocatalyst, Nanocarbon, Biomass, Water splitting, Bimetal
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).49 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
