
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Microcombustion for micro-tubular flame-assisted fuel cell power and heat cogeneration

Abstract Flame-assisted fuel cell (FFC) studies have been limited to lower fuel-rich equivalence ratios (∼1–1.7, due to the upper flammability limit and sooting limit) where only small concentrations of H2 and CO can be generated in the exhaust. In this work, a non-catalytic microcombustion based FFC is proposed for direct use of hydrocarbons for power generation. The potential for high FFC performance (450 mW cm−2 power density and 50% fuel utilization) in propane/air microcombustion exhaust is demonstrated. The micro flow reactor is investigated as a fuel reformer for equivalence ratios from 1 to 5.5. One significant result is that soot formation in the micro flow reactor is not observed at equivalence ratios from 1 to 5.5 and maximum wall temperatures ranging from 750 to 900 °C. Soot formation is observed at higher wall temperatures of 950 °C and 1000 °C and equivalence ratios above 2.5. H2 and CO concentrations in the exhaust are found to have a strong temperature dependence that varies with the maximum wall temperature and the local flame temperature.
- Tohoku University Japan
- Syracuse University United States
- Arizona State University United States
- Syracuse University United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
