
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An electrochemical model for high C-rate conditions in lithium-ion batteries

Abstract Most electrochemical models fail to accurately simulate lithium-ion battery behaviors at high C-rates (generally above 2C) and thus limit lithium-ion battery usage in many of today's applications, including electric vehicles and hybrid electric vehicles. To address this issue, the non-uniform concentration distribution effects that occur within the electrodes at higher C-rates must be included in the electrochemical model. The essential modifications to the model must incorporate solid-phase diffusion, liquid-phase diffusion, and reaction polarization. This paper develops an electrochemical model that considers high C-rate performance and assesses the model's performance for LiCoO2 batteries with charge/discharge rates up to 4C, and LiFePO4 batteries up to 5C.
- University of Maryland, College Park United States
- University of Maryland, Baltimore United States
- Harbin Institute of Technology China (People's Republic of)
- Harbin Institute of Technology China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).57 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
