Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Power Sources
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Two-phase flow in compressed gas diffusion layer: Finite element and volume of fluid modeling

Authors: Xia Zhou; Zhiqiang Niu; Zhiming Bao; Jingchao Wang; Zhanrui Liu; Yan Yin; Qing Du; +1 Authors

Two-phase flow in compressed gas diffusion layer: Finite element and volume of fluid modeling

Abstract

Abstract In this study, a stochastic model is used to reconstruct the uncompressed gas diffusion layer (GDL) microstructures. Subsequently, the finite element method (FEM) is conducted for assembly pressure simulation to generate the compressed GDL microstructures. The effects of assembly pressure on GDL deformation are investigated. It is found that assembly pressure causes non-uniform deformation of the GDL along the thickness direction. Finally, a volume of fluid (VOF) model is developed to investigate two-phase flow in the compressed GDL. The results show that when the capillary pressure is higher than 4 kPa, the water saturation decreases as the compression ratio increases. But when the capillary pressure is below 3 kPa, compression has little effect on water saturation. Based on the above findings, three regions namely weak deformation region (WDR), moderate deformation region (MDR), and strong deformation region (SDR) are defined. Impacts of compression on water saturation differ in these three regions. Moreover, compression increases the pressure of water breakthrough, but has minor effects on preferential pathways of water breakthrough. Quantitative correlations between water saturation and capillary pressure in the uncompressed and compressed GDL microstructures are also concluded.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 1%
Top 10%
Top 1%