Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Power Sources
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Aging-aware co-optimization of battery size, depth of discharge, and energy management for plug-in hybrid electric vehicles

Authors: Shaobo Xie; Xiaosong Hu; Qiankun Zhang; Xianke Lin; Baomao Mu; Huanshou Ji;

Aging-aware co-optimization of battery size, depth of discharge, and energy management for plug-in hybrid electric vehicles

Abstract

Abstract Plug-in hybrid electric vehicles (PHEVs) have a large battery pack, and the depth of discharge (DOD) significantly affects the battery longevity. In this paper, the battery degradation is considered in the co-optimization of battery size and energy management for PHEVs using convex programming. The impact of DOD on battery degradation and energy management is also investigated. The cost function consists of fuel consumption, electrical energy consumption, and equivalent battery life loss. A real-world speed profile collected from the urban city bus route up to about 70 km is used as an input to evaluate the proposed method. The results suggest that, for both cases with and without battery degradation, the total cost curve with respect to the preset final state of charge (SOC) is an upward parabola, where the optimal DOD can be identified, and the optimal battery size and energy management can be determined. The results also show that, with an initial SOC of 0.9, the proposed method can reduce the total cost by 3.6 CNY compared to other existing studies with the fixed final SOC. Moreover, a sensitivity analysis is conducted to explore the effect of battery price and initial SOC on the optimal DOD and total cost.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 1%
Top 10%
Top 1%