
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Durability of solid oxide electrolysis stack under dynamic load cycling for syngas production

A 6-cell solid oxide electrolysis stack was tested under H2O + CO2 co-electrolysis conditions. The cells used in the stack consisted of a nickel-yttria stabilized zirconia (Ni-YSZ) fuel electrode, YSZ electrolyte and lanthanum strontium cobaltite-gadolinium doped ceria (LSC-GDC) composite oxygen electrode. The aim of this study was to investigate the stack durability when operated under dynamic load conditions simulating a wind energy powered SOEC stack for synthesis gas production. The degradation of the stack was observed to be less than 1%/1000 h in terms of area specific resistance during the 1000 hours operation. Detailed electrochemical analysis revealed a constant ohmic resistance, indicating intact contact in the stack. Only minor degradation was observed, mainly due to the fuel electrode process. The overall stack voltage degradation rate was 0.8%/1000 h.
- Technical University of Denmark Denmark
Chemical Physics (physics.chem-ph), Syngas production, FOS: Physical sciences, Durability, Dynamic load testing, Physics - Chemical Physics, Solid oxide electrolysis stac, Electrochemical impedance spectroscop
Chemical Physics (physics.chem-ph), Syngas production, FOS: Physical sciences, Durability, Dynamic load testing, Physics - Chemical Physics, Solid oxide electrolysis stac, Electrochemical impedance spectroscop
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).28 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
