Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della Ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Power Sources
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ru-doped lanthanum ferrite as a stable and versatile electrode for reversible symmetric solid oxide cells (r-SSOCs)

Authors: Marasi M.; Duranti L.; Luisetto I.; Fabbri E.; Licoccia S.; Di Bartolomeo E.;

Ru-doped lanthanum ferrite as a stable and versatile electrode for reversible symmetric solid oxide cells (r-SSOCs)

Abstract

In the current scenario of innovative energy systems, reversible solid oxide cells (r-SOCs) are widely recognized as promising devices, thanks to their high conversion efficiency in both power-to-fuel and fuel-to-power modes. A crucial aspect for their scale-up is the development of multi-functional compounds that can work as either air or fuel electrodes. The most reliable alternative to conventional materials for r-SOCs are perovskite oxides. Sr -substituted lanthanum ferrites (LSF) show large mixed ionic and electronic conductivity (MIEC) and versatile catalytic activity upon B-site doping. Nevertheless, their poor stability in highly reducing environments precludes their widespread application. In this work, 5 mol% Ru-doped lanthanum ferrite La0.6Sr0.4Fe0.95Ru0.05O3-delta (LSFR05) is investigated as a multi-functional electrode for reversible and symmetric solid oxide cells (r-SSOCs). Ru-doping promotes LSF stability, retaining a higher lattice oxygen content. Upon reduction, LSFR05 exhibits exsolution of uniformly dispersed catalytically active Fe-Ru nanoparticles. All-perovskite symmetric cells showed remarkably high power density as H2-SOFC at 850 degrees C (602 mW cm-2), while in CO2-SOEC mode a current density output of 1.39 A cm-2 at 1.5 V was obtained. With a standard 70:30 CO2:CO gas composition, the cell showed a polarization resistance as low as 165 m omega cm2. The complete SOFC-SOEC reversibility was suc-cessfully assessed for over 200 h.

Country
Italy
Keywords

Ru-doping, Reversible solid oxide cell, Ru-doping; Perovskite; Exsolution; Reversible solid oxide cells; Symmetric solid oxide cells; CO2 reduction, Perovskite, 620, Settore ING-IND/22 - SCIENZA E TECNOLOGIA DEI MATERIALI, CO2 reduction, Exsolution, Symmetric solid oxide cell

Powered by OpenAIRE graph
Found an issue? Give us feedback