Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Sound and...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Sound and Vibration
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Stochastic properties of thermoacoustic oscillations in an annular gas turbine combustion chamber driven by colored noise

Authors: Yuanhao Wang; Dan Zhao; Xinyan Li; Ningfei Wang;

Stochastic properties of thermoacoustic oscillations in an annular gas turbine combustion chamber driven by colored noise

Abstract

Abstract Large-amplitude thermoacoustic oscillations are unwanted in gas turbines due to the detrimental damage to combustors. Thus predicting the onset of such oscillations and a better understanding of the unstable behaviors are important. In this work, the stochastic properties of thermoacoustic oscillations in the subthreshold region of thermoacoustic systems are investigated theoretically and numerically. The energy conversion from the unsteady heat release to sound is mainly achieved via two ways: one is caused by inherent turbulent fluctuations, and the other is due to the flame response to the acoustic waves. The turbulence-induced non-coherent heat release fluctuation is characterized by colored noise, and the coupling between the unsteady heat release and acoustic pressure is characterized by a 3rd order polynomial. Both stochastic averaging and stochastic normal form are utilized to approximate the responses of the system as a Markov process. The result shows that the correlation time τc and intensity D of the colored noise have significant but opposite effects on the dynamics of thermoacoustic oscillations, including the most probable amplitude, autocorrelation of the system as well as the correlation time. In addition, the resonance-like behaviors in signal-to-noise ratio (SNR) are observed, which denotes the emergence of coherence resonance (CR) in this annular combustion system. The optimal noise intensity, at which SNR is maximized, becomes sensitive to the variation of τc, as τc is larger than certain value. Lastly, the extent of the system coherent motions relies significantly on the proximity to the supercritical Hopf bifurcation point. Being closer to the stability boundary is found to increase the strength of system association. Meanwhile, SNR of the colored noise-induced motion becomes more distinguished, and the optimal noise intensity is shifted to a smaller value. This variation can serve as a precursor to predict the onset of thermoacoustic instability, as the correlation time remains unchanged.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%