
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Correlating turbulence intensity and length scale with the unsteady lift force on flat plates in an atmospheric boundary layer flow

handle: 2440/124818
Abstract The correlation between turbulence intensity and length scale and the lift force on a horizontal flat plate in an atmospheric boundary layer flow is investigated in this study. Experiments were conducted in a large-scale wind tunnel to measure the peak loads on flat plate models of various chord length dimensions at different heights within simulated atmospheric boundary layers. The peak lift force coefficient on the flat plates was correlated with both turbulence intensity and length scale. The results show that the peak lift force coefficient on the flat plate is a function of vertical integral length scale ( L w x ) and vertical turbulence intensity ( I w ) in terms of a parameter defined as I w ( L w x c ) 2.4 , where c is the chord length of the plate. An increase in this turbulence parameter from 0.005 to 0.054, increases the peak lift force coefficient from 0.146 to 0.787. The established relationship is then used to predict the peak wind loads on full-scale heliostats within the atmospheric surface layer as a case study. It is found that decreasing the ratio of heliostat height to the chord length dimension of the mirror panel from 0.5 to 0.2 leads to a reduction of 80% in the peak stow lift force coefficient, independent of the terrain roughness.
- University of Adelaide Australia
- University of Adelaide Australia
621, Heliostat, Atmospheric boundary layer, Wind load, 532, Turbulence intensity, Integral length scale
621, Heliostat, Atmospheric boundary layer, Wind load, 532, Turbulence intensity, Integral length scale
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).33 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
