Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Wind Engi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Wind Engineering and Industrial Aerodynamics
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessment of actuator disc models in predicting radial flow and wake expansion

Authors: Daniel Micallef; Carlos Ferreira; Iván Herráez; Leo Höning; Wei Yu; Hugo Capdevila;

Assessment of actuator disc models in predicting radial flow and wake expansion

Abstract

Abstract Navier-Stokes actuator disc models have become a mature methodology for investigating wind turbine rotor performance with numerous articles published annually making use of this approach. Despite their popularity, their ability to predict near wake expansion remains questionable. The objective of this paper is to analyse the predictive ability of actuator disc models and compare results with other popular types of codes. The methodology employs the use of an actuator disc Computational Fluid Dynamics approach to model an actuator disc and a real (finite bladed) turbine case. Results are validated with existing experimental data. In addition, results from an actuator line model with and without tip corrections and a 3D vortex panel method are presented to aid the discussion. Results show that all models give a poor wake expansion prediction particularly in the inboard to mid-board areas. A good prediction is found in the outboard regions. In addition, contrary to the well known positive effects of tip corrections on load prediction, this work shows that this does not bring any particular benefit on wake expansion prediction. The conclusions from this work help to guide the use of actuator disc models in more complex flow scenarios including floating offshore wind turbine analysis.

Countries
Netherlands, Germany
Keywords

Particle image velocimetry, 620, Wind turbine wakes, Radial flow, Wake expansion, Actuator line, Actuator disc

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%