
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Binary dragonfly optimization for feature selection using time-varying transfer functions

handle: 10072/381979
The Dragonfly Algorithm (DA) is a recently proposed heuristic search algorithm that was shown to have excellent performance for numerous optimization problems. In this paper, a wrapper-feature selection algorithm is proposed based on the Binary Dragonfly Algorithm (BDA). The key component of the BDA is the transfer function that maps a continuous search space to a discrete search space. In this study, eight transfer functions, categorized into two families (S-shaped and V-shaped functions) are integrated into the BDA and evaluated using eighteen benchmark datasets obtained from the UCI data repository. The main contribution of this paper is the proposal of time-varying S-shaped and V-shaped transfer functions to leverage the impact of the step vector on balancing exploration and exploitation. During the early stages of the optimization process, the probability of changing the position of an element is high, which facilitates the exploration of new solutions starting from the initial population. On the other hand, the probability of changing the position of an element becomes lower towards the end of the optimization process. This behavior is obtained by considering the current iteration number as a parameter of transfer functions. The performance of the proposed approaches is compared with that of other state-of-art approaches including the DA, binary grey wolf optimizer (bGWO), binary gravitational search algorithm (BGSA), binary bat algorithm (BBA), particle swarm optimization (PSO), and genetic algorithm in terms of classification accuracy, sensitivity, specificity, area under the curve, and number of selected attributes. Results show that the time-varying S-shaped BDA approach outperforms compared approaches.
- Harbin Institute of Technology China (People's Republic of)
- University of Jordan Jordan
- RMIT University Australia
- Harbin Institute of Technology China (People's Republic of)
- University of Tehran Iran (Islamic Republic of)
Artificial intelligence, Data management and data science, Machine learning, Psychology
Artificial intelligence, Data management and data science, Machine learning, Psychology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).345 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
